1,298 research outputs found

    Expressing and enforcing user-defined constraints of AADL models

    Get PDF
    The Architecture Analysis and Design Language AADL allows one to model complete systems, but also to define specific extensions through property sets and library of models. Yet, it does not define an explicit mechanism to enforce some semantics or consistency checks to ensure property sets are correctly used. In this paper, we present REAL (Requirements and Enforcements Analysis Language) as an integrated solution to this issue. REAL is defined as an AADL annex language. It adds the possibility to express constraints as theorems based on set theory to enforce implicit semantics of property sets or AADL models. We illustrate the use of the language on case studies we developed with industrial partners

    A MDE-based optimisation process for Real-Time systems

    Get PDF
    The design and implementation of Real-Time Embedded Systems is now heavily relying on Model-Driven Engineering (MDE) as a central place to define and then analyze or implement a system. MDE toolchains are taking a key role as to gather most of functional and not functional properties in a central framework, and then exploit this information. Such toolchain is based on both 1) a modeling notation, and 2) companion tools to transform or analyse models. In this paper, we present a MDE-based process for system optimisation based on an architectural description. We first define a generic evaluation pipeline, define a library of elementary transformations and then shows how to use it through Domain-Specific Language to evaluate and then transform models. We illustrate this process on an AADL case study modeling a Generic Avionics Platform

    A Model-based transformation process to validate and implement high-integrity systems

    Get PDF
    Despite numerous advances, building High-Integrity Embedded systems remains a complex task. They come with strong requirements to ensure safety, schedulability or security properties; one needs to combine multiple analysis to validate each of them. Model-Based Engineering is an accepted solution to address such complexity: analytical models are derived from an abstraction of the system to be built. Yet, ensuring that all abstractions are semantically consistent, remains an issue, e.g. when performing model checking for assessing safety, and then for schedulability using timed automata, and then when generating code. Complexity stems from the high-level view of the model compared to the low-level mechanisms used. In this paper, we present our approach based on AADL and its behavioral annex to refine iteratively an architecture description. Both application and runtime components are transformed into basic AADL constructs which have a strict counterpart in classical programming languages or patterns for verification. We detail the benefits of this process to enhance analysis and code generation. This work has been integrated to the AADL-tool support OSATE2

    An implementation of the behavior annex in the AADL-toolset Osate2

    Get PDF
    AADL is a modeling language to design and analyze High-Integrity Distributed and Real-time systems. Embedded sub-languages published as AADL annexes extend an AADL model to enhance analysis. The behavior annex specifies the behavior of an AADL application model. An implantation of this annex allows to perform behavior analysis. In addition, as there are several AADL annexes, the implementation of generic mechanisms to support each one of them is challenging. The behavior annex is a valid candidate to illustrate these challenges by combining several sub-languages. In this paper we expose our experiment to support the behavior annex in the reference AADL toolset OSATE2. This one, supports the AADL version 2 by providing a front-end and a set of analysis plug-ins to analyze an AADL model

    A Shallow Water Analogue of the Standing Accretion Shock Instability: Experimental Demonstration and Two-Dimensional Model

    Full text link
    Despite the sphericity of the collapsing stellar core, the birth conditions of neutron stars can be highly non spherical due to a hydrodynamical instability of the shocked accretion flow. Here we report the first laboratory experiment of a shallow water analogue, based on the physics of hydraulic jumps. Both the experiment and its shallow water modeling demonstrate a robust linear instability and nonlinear properties of symmetry breaking, in a system which is one million times smaller and about hundred times slower than its astrophysical analogue.Comment: 4 pages, 4 figures, accepted for publication in Phys. Rev. Letters. Supplementary Material (6 movies) available at http://irfu.cea.fr/Projets/SN2NS/outreach.htm

    Solving the "Isomorphism of Polynomials with Two Secrets" Problem for all Pairs of Quadratic Forms

    Full text link
    We study the Isomorphism of Polynomial (IP2S) problem with m=2 homogeneous quadratic polynomials of n variables over a finite field of odd characteristic: given two quadratic polynomials (a, b) on n variables, we find two bijective linear maps (s,t) such that b=t . a . s. We give an algorithm computing s and t in time complexity O~(n^4) for all instances, and O~(n^3) in a dominant set of instances. The IP2S problem was introduced in cryptography by Patarin back in 1996. The special case of this problem when t is the identity is called the isomorphism with one secret (IP1S) problem. Generic algebraic equation solvers (for example using Gr\"obner bases) solve quite well random instances of the IP1S problem. For the particular cyclic instances of IP1S, a cubic-time algorithm was later given and explained in terms of pencils of quadratic forms over all finite fields; in particular, the cyclic IP1S problem in odd characteristic reduces to the computation of the square root of a matrix. We give here an algorithm solving all cases of the IP1S problem in odd characteristic using two new tools, the Kronecker form for a singular quadratic pencil, and the reduction of bilinear forms over a non-commutative algebra. Finally, we show that the second secret in the IP2S problem may be recovered in cubic time

    Geometric control condition for the wave equation with a time-dependent observation domain

    Get PDF
    We characterize the observability property (and, by duality, the controllability and the stabilization) of the wave equation on a Riemannian manifold Ω,\Omega, with or without boundary, where the observation (or control) domain is time-varying. We provide a condition ensuring observability, in terms of propagating bicharacteristics. This condition extends the well-known geometric control condition established for fixed observation domains. As one of the consequences, we prove that it is always possible to find a time-dependent observation domain of arbitrarily small measure for which the observability property holds. From a practical point of view, this means that it is possible to reconstruct the solutions of the wave equation with only few sensors (in the Lebesgue measure sense), at the price of moving the sensors in the domain in an adequate way.We provide several illustrating examples, in which the observationdomain is the rigid displacement in Ω\Omega of a fixed domain, withspeed v,v, showing that the observability property depends both on vvand on the wave speed. Despite the apparent simplicity of some of ourexamples, the observability property can depend on nontrivial arithmeticconsiderations

    Beliefs, media exposure and policy preferences on immigration: Evidence from Europe

    No full text
    International audienceThis article studies the joint determination of beliefs about the economic impact of immigration and immigration policy preferences, using data from the five rounds of the European Social Survey (2002-2010). In addition to standard socio-economic characteristics, this analysis takes individual media consumption into account, as a determinant of opinion about immigration. Our results stress the important role of the endogenous determination of beliefs, which appears as a major determinant of policy preferences. Moreover, media exposure appears as a key determinant of beliefs: individuals who spend more time to get informed on social and political matters through newspapers and radio have a better opinion on the economic impact of immigration compared with individuals who devote time to other types of content

    Air Pollution and Urban Morphology: A Complex Relation or How to Optimize the Pedestrian Movement in Town

    Get PDF
    International audienceUrban air pollution is traditionally estimated by using techniques based on geostatistical methods, such as interpolation, applied to a set of data stemming from measures of stations of pollution. Now very often, these stations are in insufficient number or do not measure the same pollutants to allow mapping finely dispersion of air pollution through urban spaces. Numerous studies work then from land registries of broadcasts. Although interesting in a regional scale, these studies bring only not enough information in the understanding of the phenomena to a scale as fine as the intra-urban. So, it is necessary to resort to the fine three-dimensional modelling to dread this intra-urban scale and it is what we describe now
    corecore